Roles of P2X₇ Receptor in Glial and Neuroblastoma Cells: The Therapeutic Potential of P2X₇ Receptor Antagonists

Synthia H. Sun

Received: 29 November 2009 / Accepted: 16 March 2010 / Published online: 21 April 2010 © Springer Science+Business Media, LLC 2010

Abstract Recently, one of the P2 purinergic receptors, the P2X₇ receptor, has been extensively studied in nervous system and important functions have been revealed in both astrocytes and microglia. Stimulation of the receptors induces a sustained and nondesensitized increase in intracellular Ca²⁺ concentration ([Ca²⁺]_i). In astrocytes purinergic receptors primarily regulate neurotransmission by inducing gliotransmitters release whereas in microglia the receptors stimulate the processing and release of proinflammation cytokines such as interleukin-1 and are thereby involved in inflammation and neurodegeneration. Thus, P2X7 receptors are considered not only to exert physiological functions but also mediate cell death. P2X₇ receptors have also been identified in various cancer cells and in neuroblastoma cells. In these cells, the P2X₇ receptor-mediated sustained Ca²⁺ signal is important in maintaining cellular viability and growth. Accordingly, these findings not only lead to a better understanding of roles of the receptor but also prompt the development of more potent, selective and safer P2X₇ selective antagonists. These emerging antagonists bring new hope in the treatment of inflammatory-induced neurodegenerative diseases as well as neuroblastoma.

Keyword Astrocytes · N2a neuroblastoma cells · Oxidized ATP · $P2X_7$ receptor · $P2X_7$ receptor antagonists

Introduction

ATP has been well accepted as a neurotransmitter [1] and more recently as a gliotransmitter [2]. ATP plays many

S. H. Sun (🖂)

Institute of Neuroscience, National Yang Ming University,

Taipei, Taiwan, Republic of China

e-mail: shsun@ym.edu.tw

P2X₇ Receptor-Mediated Ca²⁺ Influx in Astrocytes Using Specific Agonists and Antagonists

terminals of neurons [11].

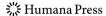
The ATP analogue 2'-,3'-O-(4-benzoylbenzoyl)-ATP (BzATP) was originally introduced as a photoaffinity label for ATPase [12] and was shown to be a potent agonist for P2 receptors in the transform fibroblasts [13]. Since then, BzATP has been shown to be extremely potent at the P2X₇ receptor and is widely used as its selective agonist [5, 14]. In addition, several agonists have been shown to activate P2X₇ receptor with distinct potency [1, 3, 14–16]. Periodate-oxidized 2',3'-dialdehyde ATP (oATP) is a

important roles in the nervous system, especially in modulating neurotransmission via two families of purinergic receptors, P2Y and P2X. Both P2 receptors are widely distributed in the CNS [1, 3]. P2Y receptors are G-protein coupled receptors consisting of eight subtypes: P2Y₁, P2Y₂, P2Y₄, P2Y₆, P2Y₁₁, P2Y₁₂, P2Y₁₃, and P2Y₁₄. P2X receptors are ionotropic receptors and consist of receptor subtypes: P2X₁, P2X₂, P2X₃, P2X₄, P2X₅, P2X₆, and P2X₇. The P2X₇ receptor was initially classified as a nonselective, pore-forming P2Z class that induces cytolytic activities in macrophages and other types of cells. Early studies revealed that activation of the P2Z receptor required a high concentration of ATP [3] allowing a bidirectional increase in plasma membrane permeability to molecules as large as 900 Da and induced the release of endogenous molecules [4, 5]. Therefore, the receptor has been suggested to mediate the release of gliotransmitters in the nervous system. The P2Z receptor was cloned from rat brain and showed sequence homology to the P2X receptor and was therefore renamed P2X₇ receptor [6]. In the nervous system, P2X₇ receptors can be found on microglia [7], both type-1 and type-2 astrocytes [8-10], and presynaptic

Schiff-base forming reagent commonly used as a selective P2X₇ receptor antagonist. Effective inhibition of P2X₇ receptors requires a concentration of 100-600 µM and a 2-h pretreatment [17]. Using both agonist (BzATP) and antagonist (oATP), Ballerini et al. [8] were the first to show P2X₇ receptor-mediated Ca²⁺ influx from extracellular space in astrocytes demonstrating activation and function of P2X₇ receptor. Further, in RBA-2 type-2-like astrocytes, BzATP was much more potent than ATP, adenosine 5'-O-(3thiotriphosphate), and 2-methylthioadenosine triphosphate, whereas ADP, UTP, α , β methylene-ATP, and β , γ -methylene-ATP were ineffective in raising intracellular Ca2+ concentrations ($[Ca^{2+}]_i$) [10]. BzATP was further shown to stimulate a sustained and nondesensitized increases in [Ca²⁺]_i in RBA-2 type-2-like astrocytes [18]. Using similar methods, P2X₇ receptor-mediated Ca2+ influx was also identified in rat cortical type-1 astrocytes [9]. Additionally, electrophysiological studies revealed that activation of P2X7 receptor did not induce desensitization in HEK cells overexpressed with P2X₇ receptors cloned from rat brain [5, 6]. Thus, P2X₇ receptors may exert important physiological functions downstream of Ca²⁺ signaling in astrocytes.

P2X₇ Receptor Induces Pore Formation and Gliotransmitter Release in Astrocytes

The most unique feature of P2X₇ receptors is the prolonged agonist stimulation-induced pore formation that allows uptake of molecules as large as 900 Da. The phenomenon can be assayed by uptake of fluorescent dyes such as Lucifer Yellow and Yo-Pro-1. Pore formation has been shown to be essential for the P2X₇ receptor-mediated IL-1 release in human monocytes [19]. Based on permeability, the astrocytic glutamate release was thought to be mediated through P2X₇ receptors directly [20]. Pelegrin and Surprenant [21] showed that pannexin-1, a gap junction hemichannel protein abundantly express in the brain [22], was involved in pore formation of P2X₇ receptor. Lo et al. [18] observed a 30- to 60-min delay of BzATP-induced Yo-Pro-1 uptake as compared with the BzATP-induced Ca²⁺ influx in RBA-2 astrocytes but not in P2X₇ receptortransfected HEK cells. RBA-2 astrocytes do not express pannexin family of gap channel proteins but do express protein from connexin family of gap junction proteins such as: Cx30, Cx32, and Cx43 (unpublished data). Additionally, the ATP [23] and glutamate [24] release from astrocytes has been identified to mediate through connexin hemichannel. Thus, connexin may also be involved in pore formation in astrocytes.


Multiple mechanisms are involved in gliotransmitter release from astrocytes, $P2X_7$ receptor being one of them. Initially, activation of $P2X_7$ receptor was shown to induce purine release from astrocytes [8]. Duan et al. [20] later

revealed that activation of the P2X₇ receptor-mediated glutamate release directly. They found that the P2X₇ receptor selective agonist BzATP stimulated inward current of primary astrocytes more potent than ATP-induced permeability to glutamate and aspartate. Furthermore, the BzATP stimulated [³H]aspartate release, stimulation of inward current and release of glutamate were all blocked by the P2X₇ receptor selective antagonist, oATP. More recently, through the use of genetically modified 1321N1 astrocytoma cells and spinal cord astrocytes derived from the neonatal Cx43- and P2X₇ receptor-null mice, Suaducani et al. [25] provided strong evidence showing that P2X₇ receptors, but not Cx43 hemichannels, were the sites of ATP release.

Type-2 astrocytes are GFAP- and A2B5-positive, process-bearing astrocytes, and their role may be to surround the synapses and modulate extracellular neurotransmitter concentration [26]. Using BzATP and oATP, activation of P2X₇ receptors was shown to stimulate [³H] GABA release through a Ca²⁺-independent and Cl⁻/ HCO₃-dependent mechanism, regulated by protein kinase C, cAMP-dependent protein kinase, mitogen-activated protein kinase kinases/extracellular signal-regulated kinases, and phospholipase D in RBA-2 type-2-like astrocytes [27]. Similarly, the ATP-induced ATP release from primary cortical astrocytes was also found to be Ca²⁺independent and was inhibited by nonselective anion channel blockers [28]. In addition, the ATP-stimulated [3H]GABA release was almost completely blocked by a high concentration of extracellular Mg²⁺ [27]. The divalent ions have been shown to inhibit the whole-cell currents and uptake of Yo-Pro-1 in HEK293 cells expressing the rat P2X₇ receptor [5, 29]. This inhibition has been considered a specific property of the P2X₇ receptor suggesting that ATP⁴⁻ may be the ligand for the receptor. Taken together, the P2X₇ receptor may modulate neurotransmission by controlling the release of gliotransmitters from astrocytes through multiple mechanisms.

P2X₇ Receptors Mediate Cell Death in the Nervous System

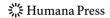
Activation of $P2Z/P2X_7$ receptors is known to mediate cytolysis [6]. The proinflammatory cytokine, interleukin (IL)-1 plays a significant role in neuronal death following pathological insults [30], and $P2X_7$ receptors can induce the processing and release of IL-1 β in the immune responsive cells [31]. Using $P2X_7$ receptor knockout mice, $P2X_7$ receptors were confirmed to be involved in maturation and release, but not the synthesis of IL-1 β [32]. In the nervous system, microglial cells were found to express the $P2X_7$ receptor and to be exquisitely sensitive to ATP-mediated cytotoxicity [33]. $P2X_7$ receptor-mediated IL-1 β secretion was identified in microglia [34], and the receptor-induced

sustained increases in $[Ca^{2+}]_i$ was shown to play a pivotal role in potentiation of the secretion [35]. Mechanistic studies further revealed that the extracellular ATP triggers fast maturation and release of intracellularly accumulated IL-1 β by activating the IL-1 β -converting enzyme/caspase 1 in microglia [36]. Taken together, it is clear that P2X₇ receptors are involved in IL-1-mediated inflammation and neurodegeneration in the nervous system. Thus, the selective antagonists of P2X₇ receptors are emerging as a new therapeutic strategy.

P2X₇ Receptors are Important in Maintenance of Cell Viability of Neuroblastoma Cells

The physiological function of P2X₇ receptor in neuronal or neuronal-like cells remains elusive. P2X₇ receptor signaling has been identified in NG108-15 [37] and SH-SY5Y [38] neuroblastoma cells. Stimulation of P2X7 receptors supported proliferation in human neuroblastoma cells [39]. However, P2X₇ receptors were also found to trigger the death of retinal cholinergic cells thereby controlling the total number, the local density, and spacing of neurons [40]. The expression and function of P2X₇ receptor was shown to correlate with the severity of B cell chronic lymphocytic leukemia [41]. An early study demonstrated that transfection of P2X₇ cDNA into the P2X₇ receptor lacking lymphoid cells sustained the proliferation in a serum-free medium [42]. In addition, P2X₇ receptors were absent from normal, cancer-free prostate epithelium obtained from young men, whereas P2X₇ receptors was present in every case of 116 confirmed prostate cancers regardless of patient age [43]. Thus, the P2X₇ receptor may support proliferation of the certain cancer and neuroblastoma cells.

Functional Inhibition of P2X₇ Receptors by Selective Antagonists Induce Neuronal Differentiation of N2a Neuroblastoma Cells


Although P2X₇ receptors mediate neurotransmission via astrocytes, they are also known to be involved in the release of proinflammatory cytokines by microglia suggesting a role in inflammation. Recently, inhibition of P2X₇ receptors was found to promote axon outgrowth and branches of hippocampal neurons [44]. N2a neuroblastoma cells are known to extend neurite growth in response to various differentiation agents. Retinoic acid (RA)-induced neurite outgrowth and neuronal marker expression were associated with decreases in expression and function of P2X₇ receptors [45]. Interestingly, neurite outgrowth was also induced through functional inhibition of P2X₇ receptors by the selective antagonists, oATP or brilliant blue G (BBG) or A438079, or knockdown P2X₇ receptor expression by siRNA. To elucidate the possible mechanism, the levels of

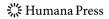
basal [Ca²⁺]_i were measured. RA, oATP, and knockdown P2X₇ receptor all decreased basal levels of [Ca²⁺]_i. Simply culturing N2a cells in a low Ca²⁺ medium induced a twofold increase in neurite length. Inhibition of P2X₇ receptors or application of apyrase to degrade extracellular ATP decreased cell viabilities, suggesting that endogenous ATP release-activated P2X₇ receptors may be important in maintaining cell viability of N2a cells [45]. Recently, endogenous ATP release was also found to activate P2X₇ receptors channel in mouse astrocytes [46]. Taken together, these results imply that the P2X₇ receptor may be activated under physiological condition via endogenous ATP release. Furthermore, Ca²⁺/calmodulin-dependent kinase II signaling cascade has been shown to mediate the P2X₇ receptor-dependent inhibition of neuritogenesis in N2a cells [47].

Inhibition of P2X₇ Receptor is New Therapeutic Strategy

Because of the association with inflammation and neuropathic pain, a great effort has been made to develop more potent and highly selective P2X₇ receptor antagonists [48, 49–53]. Treatment of P2X₇ antagonists to chronic experimental autoimmune encephalomyelitis (EAE) also reduced demyelination and ameliorated the associated neurological symptoms [54]. BBG and the newly developed P2X₇ receptor selective antagonist A438079 [51] were shown to inhibit P2X7 receptors with nanomolar affinity. P2X₇ receptors have also been identified in spinal cord neuron [55]. In a peritraumatic zone spinal cord injury model, exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death; however, treatment with antagonists significantly diminished cell death and improved functional recovery [55]. Recent evidence showed that administration of the P2X₇ antagonist, BBG, 15 min after spinal cord injury, reduced spinal cord anatomic damage and improved motor recovery, indicating that BBG not only protected spinal cord neurons from purinergic excitotoxicity, but also reduced local inflammatory responses [56].

We have recently shown that P2X₇ receptor antagonists, oATP, BBG, and A438079, all stimulated neurite outgrowth of N2a neuroblastoma cells. Nevertheless, the BBG- and A438079-stimulated neurites were shorter than those stimulated by oATP [45]. In addition, oATP, but not BBG, inhibited cell proliferation and altered cell cycle progression. This may be because, while BBG and A438079 are reversible antagonists [51, 57], oATP inhibited the P2X₇ receptor-mediated currents irreversibly [6] and affect other P2X₇ receptor-independent mechanisms [58, 59]. Therefore, effects of oATP on inhibition of proliferation and alteration of cell cycle progression of N2a neuroblastoma cells may be mediated through both P2X₇-dependent and -independent mechanisms.

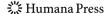
Concluding Remark


P2X₇ receptors are ATP-gated ion channel. In astrocytes, activation of these receptors induces a sustained and nondesensitized Ca2+ influx. Activation of P2X7 receptor requires a high concentration (≥1 mM) of extracellular ATP and endogenous ATP release from astrocytes [46], and N2a neuroblastoma cells [45] can activate the receptors in the absence of ligand. Thus, P2X₇ receptors can be activated under physiological condition to mediate important functions such as neurotransmission and regulation of cell growth. It is also well accepted that P2X₇ receptors play a key role in IL-1 processing and secretion in immune responsive cells and is thus involved in inflammatory responses and cell death [60]. In addition, P2X₇ receptors play a role in the growth of many cancer cells. Researchers found that inhibition of P2X7 receptors is linked to reducing spinal cord injury [55, 56] and ameliorated neurological symptoms with EAE [54]. These findings suggest novel therapeutic strategy utilizing P2X7 receptor antagonists. The development of more potent, highly selective, and much safer P2X₇ receptor antagonists will bring new hope in the treatment of the neurodegenerative diseases.

References

- 1. Burnstock G (1997) The past, present and future of purine nucleotides as signaling molecules. Neuropharmacology 36:1127–1139
- Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trend Neurosci 26:536–542
- El-Moatassim C, Dubyak GR (1993) Dissociation of the poreforming and phospholipase D activities stimulated via P2Z purinergic receptors in BAC1.2F5 macrophages. J Biol Chem 268:15571–15578
- Steinberg TH, Newmann AS, Swanson JA, Silverstein SC (1987) Extracellular ATP42 promotes cation fluxes in the J774 in the mouse macrophage cell line. J Biol Chem 262:8884

 –8888
- North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067
- Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738
- Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, DiVirgilio F (1996) Mouse microglia cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531– 1530
- Ballerini P, Rathbone MP, Di Lorio P, Renzetti A, Giuliani P, D'Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. NeuroReport 7:2533–2537
- Nobile M, Monaldi I, Alloisio S, Cugnoli C, Ferroni S (2003) ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett 538:71–76
- Sun SH, Lin L-B, Hung AC, Kuo J-S (1999) ATP-stimulated Ca²⁺ influx and phospholipase D activities of a rat brain-derived type-2


- astrocyte cell line, RBA-2, are mediated through P2X₇ receptors. J Neurochem 73:334–343
- Duechars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TFC, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X₇ receptors are targeted to presynaptic terminals in the central and peripheral nervous system. J Neurosci 21:7143–7152
- 12. Williams N, Coleman PS (1982) Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photo-affinity probe, 3'-O-(4-benzoyl)benzoyl adenosine 5'-tri-phosphate. J Biol Chem 257:2834–2841
- 13. Gonzalez FA, Ahmed AH, Lustig KD, And EL, Weisman GA (1989) Permeabilization of transformed mouse fibroblasts by 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate and the desensitization of the process. J Cell Physiol 139:109–115
- Baraldi PG, Di Virgilio F, Romagnoli R (2004) Agonists and antagonists acting at P2X₇ receptor. Curr Top Med Chem 4:1707– 1717
- Harden TK, Boyer JL, Nicholas RA (1995) P2-purinergic receptors: subtype-associated signaling responses and structure. Annu Rev Pharmacol Toxicol 35:541–579
- Boarder MR, Hourani SMO (1998) The regulation of vascular function by P2 receptors: multiple sites and multiple receptors. Trends Pharmacol Sci 19:99–107
- Murgial M, Hanaug S, Pizzol P, Rippag M, Di Virgio F (1993)
 Oxidized ATP. J Biol Chem 266:8199–8203
- Lo J-C, Huang W-C, Chou YC, Tseng CH, Lee WL, Sun SH (2008) Activation of P2X₇ receptors decreases glutamate uptake and glutamine synthetase activity in RBA-2 astrocytes via distinct mechanisms. J Neurochem 105:151–164
- Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X₇ receptor impairs ATP-induced IL-1 release from human monocytes. J Immunol 172:3399–3405
- Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA (2003) P2X₇ receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328
- Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1b release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082
- Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. PNAS 100:13644–13649
- Stout CE, Costantin JL, Naus CCG, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488
- Ye Z-C, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596
- Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca²⁺ signaling. J Neurosci 26:1378–1385
- Wilkin GP, Marriott DR, Cholewinski AJ (1990) Astrocyte heterogeneity. Trends Neurosci 13:43–46
- 27. Wang C-M, Chang Y-Y, Kuo J-S, Sun SH (2002) Activation of P2X7 receptors induced [3H]GABA release from RBA-2 type-2 astrocyte cell line through a Cl-/HCO3-dependent mechanism. Glia 37:8–18
- Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256
- Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neurophannacology 36:1285–1294
- Le Feuvre R, Brough D, Rothwell N (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 447:261–269
- 31. Ferrari D, Chiozzi P, Falzoni S, Dal SM, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1β release

- by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458
- Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132
- Ferrari D, Chiozzi P, Falzoni S, Dal SM, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36:1295–1301
- 34. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Séguéla P (2002) ADP and AMP induce interleukin-1β release from microglial cells through activation of ATP-primed P2X7 receptor channel. J Neurosci 22:3061–3069
- 35. Gudipaty L, Munetz J, Verhoef PA, Dubyak GR (2003) Essential role for Ca²⁺ in regulation of IL-1β secretion by P2X7 nucleotide receptor in monocytes, macrophages, and HEK-293 cells. Am J Physiol Cell Physiol 285:C286–C299
- Sanz JM, Di Virgilio F (2000) Kinetics and mechanism of microglial cells ATP-dependent IL-1ß release from microglial cells. J Immunol 164:4893

 –4898
- Song S-L, Chueh S-H (1996) Antagonistic effect of Na⁺ and Mg²⁺ on P2z purinoceptor-associated pores in dibutyryl cyclic AMPdifferentiated NG108-15 cells. J Neurochem 67:1694–1701
- Larsson KP, Hansen AJ, Steen D (2002) The human SH-SY5Y neuroblastoma cell-line expresses a functional P2X7 purinoceptor that modulates voltage-dependent Ca²⁺ channel function. J Neurochem 83:285–298
- Raffaghello L, Chiozzi P, Falzoni S, Di Virgillio F, Pistoia V (2006) The P2X₇ receptor sustains the growth of human neuroblastoma cells through a substance P-dependent mechanism. Cancer Res 66:907–914
- Resta V, Novelli E, Di Virgilio F, Galli-Resta L (2005) Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development 132:2873–2882
- 41. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A, Cuneo A, Castoldi G, Di Virgilio F, Baricordi OR (2009) P2X₇ receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708
- Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell G, Di Virgilio F (1999) Increased proliferation rate of lymphoid cells transfected with the P2X₇ ATP receptor. J Biol Chem 274:33206–33208
- Slater M, Danieletto S, Gidley-Baird A, Teh LC, Barden JA (2004) Early prostate cancer detected using expression of nonfunctional cytolytic P2X7 receptors. Histopathology 44:206–215
- 44. Díaz-Hernández M, Del Puerto A, Diaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ, Miras-Portugal MT (2008) Inhibition of the ATP-gated P2X₇ receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci 121:3717–3728
- 45. Wu PY, Lin YC, Chang CL, Lu HT, Chin CH, Hsu TT, Chu D, Sun SH (2009) Functional decreases in P2X₇ receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cell Signal 21:881–891
- 46. Nagasawa K, Escartin C, Swanson RA (2009) Astrocyte cultures exhibit P2X₇ receptor channel opening in the absence of exogenous ligands. Glia 57:622–633
- 47. Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT (2009) Ca²⁺/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 276:5307–5325
- 48. Alcaraz L, Baxter A, Bent J, Bowers K, Braddock M, Cladingboel D, Donald D, Fagura M, Furber M, Laurent C, Lawson M,

- Mortimore M, McCormick M, Roberts N, Robertson M (2003) Novel P2X7 receptor antagonists. Bioorg Med Chem Lett 13:4043–4046
- Stokes L, Jiang L-H, Alcaraz L, Bent A, Bowers K, Fagura M, Furber M, Mortimore M, Lawson M, Theaker J, Laurent C, Braddock M, Surprenant A (2006) Characterization of a selective and potent antagonist of human P2X7 receptors, AZ11645373. Br J Pharmacol 149:880–887
- 50. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl] amino}-2, 2-dimethylpropyl)-2-(3, 4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Therapeu 319:1376–1385
- Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X₇ receptor-selective antagonists offers new insights into P2X₇ receptor function and indicates a role in chronic pain states. Br J Pharmacol 151:571–579
- 52. Florjancic AS, Peddi S, Perez-Medrano A, Li B, Namovic MT, Grayson G, Donnelly-Roberts DL, Jarvis MF, Carroll WA (2008) Synthesis and in vitro activity of 1-(2, 3-dichlorophenyl)-N-(pyridin-3-ylmethyl)-1H-1, 2, 4-triazol-5-amine and 4-(2, 3-dichlorophenyl)-N-(pyridin-3-ylmethyl)-4H-1, 2, 4-triazol-3-amine P2X7 antagonists. Bioorganic Med Chem Letters 18:2089–2092
- 53. Broom DC, Matson DJ, Bradshaw E, Buck ME, Meade R, Coombs S, Matchett M, Ford KK, Yu W, Yuan J, Sun SH, Ochoa R, Krause JE, Wustrow DJ, Cortright DN (2008) CharacterizationN-(adamantan-1-ylmethyl)-5-[(3R-amino-pyrrolidin-1-yl)methyl]-2-chloro-benzamide (AACBA), a P2X₇ antagonist in animal models of pain and inflammation. J Pharmacol Exp Ther 327:620–633
- 54. Matute C, Torre I, Pérez-Cerdá F, Pérez-Samartín A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodríguez-Antigüedad A, Sánchez-Gómez MV, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533
- Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu SQ, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10:821–827
- Peng W, Cotrina ML, Han X, Yu H, Bekar L, Blum L, Takano T, Tian G-F, Goldman SA, Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury. PNAS 106:12489–12493
- 57. Jiang L-H, Mackenzie AB, North RA, Surprenant A (2000) Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88
- Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 140:507–519
- 59. Chen HB, Sun SH (2006) Oxidized ATP (oATP) decreases β -actin expression and intracellular superoxide concentrations in RBA-2 type 2 astrocytes independently of P2X $_7$ receptor. Eur J Pharmacol 550:1–7
- Ferrari D, Pizzirani C, Adinolfi E, Lemoli L, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883

